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Abstract 

The various criteria used for graduating the thickness of violin plates are discussed.  These 
are shown apparently to be conflicting.  A case is made that the flexural stiffness of the 
plates should be given priority.  A simple indirect method is given for finding the flexural 
stiffness of the plates without the need to flex them in the hands or to apply forces and 
measure deflections.  The method requires the back and belly resonance frequencies in the 
“ring” and “X” modes (modes 2 and 5) to be combined and modified by the plate weight to 
find a number that has proportionality to the plate stiffness.  A suggested value is given for 
this stiffness number.  The same stiffness number can be used for violins, violas and cellos. 

 

The important tonal determinants in the violin 

Before discussing methods of plate graduation we need to have a clear understanding of 
what are the important tonal determinants in the construction of the violin.  The bowed violin 
string assumes a waveform that approximates to a saw tooth shape.  This can be 
represented as a series of simple harmonic vibrations of displacement amplitude na  that 
decline as 1/n.  The transverse string vibration (referred to as TSV) puts a transverse force 
(TSV force) on the bridge, which tends to rock it in its own plane.  The transverse 
displacement of the string increases its tension and causes a vibration of string tension 
(referred to as longitudinal string vibration, or LSV).  The amount of LSV developed in this 
way is small, but a larger amount is developed by the modal action of the body, which alters 
the distance between the string supports.   

The ratio of the LSV force on the bridge to the TSV force on the bridge has been found 
experimentally [2] to be about 0.4 up to 5000Hz, and above 6000Hz about 0.1.  The transfer 
of power from the string to the body, per unit force squared by LSV force, is however about 
ten times higher than that by TSV force. The LSV forces put a downward force on the bridge 
and an upward force on the saddle and nut, which tends to make the bridge bounce 
vertically in its own plane and the violin bend in its length.  But internally, LSV induces forces 
in the body, which tend to drive the end bouts cross arches and radiate sound efficiently.   

The violin complete with its strings vibrates in patterns called modes.  The modal 
displacements peak at resonance frequencies.  At any harmonic frequency the forces 
applied to the body will excite those modes that have resonance frequencies that are close, 
and which have large displacements in the direction of the applied forces.  Up to about 
1500Hz, the body modes are fairly widely spaced and the spatial arrangement of the applied 
forces is not critical, the nearest mode will be excited.  Above 1500Hz as the modal overlap 
increases the spatial arrangement of the applied forces becomes significant in determining 
which modes are excited.  The modes that involve large displacements of the end bouts 
cross arches are driven by LSV.  The magnitude and direction of the LSV forces that are 
induced in the end bouts cross arches is very dependant on the arching shape.  For this 
reason the sound radiated above 1500Hz is very arching dependant.  These higher order 
harmonics have a significant effect on the timbre of the tone and the projection.   All these 
matters are fully discussed in a later paper that I will submit to this Journal [2].   



 

 

 

 

Not only is the arching shape important, but so also is the flexural stiffness of the plates both 
along and across the grain.  It is possible to reproduce the same arching shape from 
instrument to instrument but unless the flexural stiffnesses are the same the arch will not 
behave in the same way.   Much study has been made of the lower order modes in the violin 
and methods of controlling their resonance frequencies and even the mode shapes have 
been suggested, but the higher order modes are too numerous and complicated to yield to 
the same analysis and be controlled by the same methods.  However, close control of the 
plate flexural stiffnesses and certain relevant features of the arching shape will ensure that a 
consistent pattern of higher order modes is excited.  This will give tonal repeatability.  In this 
paper the concern is with repeating the same flexural stiffness.  In later papers the important 
features of the arching shape are identified [2] and a method of control is given [3].  

The difficulties of plate thickness graduation 

In making the wooden parts of a violin there are really only two things to get right, the shape 
and the thickness.  We tend to think of the arching shape as being the shape of the outside 
surface.  Acoustically, the shape of the arching of the plates is the shape of the centerline of 
the wood thickness.  If we make the arching with the same outer surface shape in all our 
instruments but graduate the thicknesses differently, then the wood-centerline arching shape 
will be different each time.  This difference is not as inconsequential as is often assumed, 
and is certainly sufficient to affect significantly how the body responds to LSV forces. 

To make progress in violinmaking it is very important to alter one thing only from one violin to 
another in order to test its effect on tone, or to change nothing if we want to repeat the same 
tone every time.  A series of violins with differing wood but the same shapes and 
thicknesses, will not produce the same result.  Ideally, we must find a way of adjusting the 
thicknesses of the wood in such a way that the wood-centerline arching shape, the plate 
flexural stiffness and the resonance frequencies are maintained constant. 

Suppose one makes a violin and then removes the belly and adjusts the thicknesses and 
reassembles the instrument until the tone is optimized.  In doing this the maker will have 
altered the wood-centerline arching shape, the resonance frequency, the flexural stiffness of 
the plate to different degrees along and across the grain, and the mass.  To attribute the 
resulting tonal change, to a change in resonance frequency alone (or any other single 
variable) is not justified, and the maker will have learned nothing from the exercise. 

A violin made as a copy of another cannot be the same unless the wood thicknesses are 
adjusted to give the same resonances and the same plate flexural stiffness, and the surface 
shape of the arching is adjusted to give the same wood-centerline shape with the different 
wood thicknesses. 

Criteria for graduating violin plate thickness 

There are at least four basic systems of plate thickness graduation that have been used, and 
are still used.  They rely on different criteria, a case can be made in support of all of them, 
and they all have their advocates. 

Criterion 1.  We should make the wood thickness the same every time. 

It is very important tonally that the same wood-centerline arching shape should be 
reproduced from violin to violin.  This can most conveniently be achieved by making the 
plate thicknesses the same for every instrument.  This method ignores the requirements of 
the valid criteria 2 and 3 below, thus detracting from its undoubted benefits. 

In a paper that I will submit to this Journal shortly [3], I show that by adjusting the surface 
arching shape, it is possible to make the plate thicknesses different from instrument to 
instrument and still maintain the same wood-centerline arching shape.  

Criterion 2.  We should adjust the thickness of the wood to make the long-grain and cross-
grain plate bending stiffness constant. 



 

 

 

 

The radiation of sound requires that the wood flex.  The stiffness of the plate in flexure, both 
along and across the grain will need to be the same for all instruments made in order that 
the plates behave in the same way.  There is no point in having identical arching shapes if 
the flexural stiffnesses are different.  To ensure repeatable tonal results the wood thickness 
must be adjusted to give the same long-grain and cross-grain flexural stiffness.  An 
instrument has a certain playing resistance that the player is sensitive to.  Some violins 
speak too easily and others need really hard playing to respond.  There are a large number 
of possible causes of this but the flexural stiffness of the plates must be involved here.  
Historically, many makers may have removed wood from the detached plates until some 
degree of flexibility was achieved.  They probably assessed the flexural stiffness of a 
detached plate by pressing the thumbs into the center of the plate while at the same time 
pulling up on the edges with the fingers.  Assessment of plate stiffness by feel may be 
reasonably accurate if a reference plate is available for comparison, but a less subjective 
method is presented in this paper. 

Criterion 3.  We should adjust the natural resonance of the free plates to certain 
predetermined frequencies. 

The violin radiates sound from modes and it has been suggested that the frequency at which 
some of the major modes occur may be tonally significant.  With this aim in view, Carleen 
Hutchins proposed her well-known method of plate tuning [5-7].  The thicknesses of the 
detached back and belly plates are graduated to bring the resonance frequencies of up to 
three of the free plate modes, the 1st, 2nd  (or “X mode”) and 5th (or “ring mode”) to certain 
prescribed frequencies and certain relationships between the back and belly.  The objective 
is that when these plates are assembled into an instrument it will produce a more even 
“loudness” across the instrument.  My experience with tuning the detached plates to 
prescribed frequencies is that there is a tonal benefit.  The balance between the upper and 
lower strings is affected.  To that extent I find the method works.  However, the problem with 
it is that plates of widely varying mass can all be tuned to the same resonance frequencies.  
These plates would all have different flexural stiffness and the requirement of criterion 2 
would not be met.  Joseph Curtin [8] pointed out his concern that thicknessing by resonance 
frequency alone, disregards other plate properties that seemed too important to neglect.  My 
experience is that because of its failure to control the flexural stiffness of the plates, plate 
tuning to predetermined frequencies alone, does not give tonal consistency from one violin 
to another.  

Criterion 4.  We should adjust the plate thicknesses of the assembled violin to match some 
of the principal modal frequencies and shapes to those of a recognized standard as revealed 
by the frequency response function (frf) of the radiated sound.  

This method was pioneered by Martin Schleske [9, 10] and is arguably a shift from plate 
tuning to body tuning.  As such it can be criticized for the same reasons as plate tuning, 
there are many different masses and stiffnesses that would give the same modal 
frequencies, but not necessarily the same sound. The surface arching shape can be taken 
from the instrument being copied but the subsequent adjustment of the thicknesses will alter 
the arching shape.  Advocates of this method might argue that the precise arching shape is 
unimportant because the mode shapes and frequencies are the ultimate concern.  But these 
can only be controlled in a few of the low order harmonics.  The high order harmonics are 
much more arching dependant.  Many violinmakers may find this method frighteningly 
complicated. 

Personally, I find the method too holistic, in that too many variables are altered at once.  I 
like to be able to control separately the wood-centerline arching shape, the flexural stiffness 
and the resonance frequencies, so that I can identify their effects on the tone.   



 

 

 

 

The criterion used in the method proposed in this paper 
While it would be good to satisfy all the above criteria, that is clearly not possible.  Choices 
have to be made.  Essentially what I do is, graduate the plate thickness to maintain the same 
long-grain and cross-grain stiffness in all my instruments (criterion 2).  I make this my priority 
because the coupling of the LSV with the body is highly dependent on the arching shape 
and the long-grain and cross-grain wood stiffnesses.  I satisfy the plate-tuning requirement 
(criterion 3) by careful choice of wood.  I satisfy the requirement of criterion 1 by modifying 
the surface arching shape to maintain the same wood-centerline arching shape with the 
thicknesses used. 

I will now describe how I graduate the plate thickness to achieve prescribed plate flexural 
stiffness. 

Determination of the plate flexural stiffness 

The flexural stiffness of a detached violin plate is proportional to the product of its weight and 
the square of its resonance frequency.  For those interested in the derivation of this basic 
relationship, it is given in an appendix to this paper.  The relationship holds good for any size 
of plate, violin, viola or cello.  The resonance frequency should be that of a mode that best 
samples the wood properties over a large area of the plate and in both directions of the 
grain.  Of the various possible free-plate modes there are two that are particularly useful.  
These are traditionally described as the second and fifth modes, or as the ‘X mode’ and the 
‘ring mode’.  Many violinmakers are familiar with these modes and know how to find their 
resonance frequencies, or tap tones as they are often called.  The methods need not be 
described here except to say that suspending the plate between the thumb and second 
finger, tapping it with a knuckle and comparing the modal frequency with a tuning fork or 
piano keyboard, achieves sufficient accuracy.  The extra precision afforded by electronic 
methods is not needed but can be helpful to those with a less experienced ear.  These 
procedures are well described by Hutchins [5].  If musical notation is used to define the tap 
tones, these must be converted to the frequency in Hertz (cycles per second).  We calculate 
the plate stiffness factor using the formula:       
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The calculated result is not an absolute stiffness but a figure (in grams) that is proportional to 
the stiffness.  The procedure of taking the frequency as the average of the ring mode and X-
mode frequencies needs some justification.  The ring-mode frequency is largely determined 
by the thickness in the upper and lower bouts and can be lowered by thinning in these areas.  
It reflects the stiffness of the plate in bending along the grain.  The X-mode frequency is 
largely determined by the thickness in the center bouts and can be lowered by reducing this.  
It reflects the stiffness of the plate in cross-grain bending.  Combining both these modes in 
the formula therefore takes account of the effect of the wood bending resistance both along 
and across the grain.  I graduate the plate to place the ring-mode frequency at an octave 
above the X-mode frequency.  The difference is not important, but it must be consistent 
because it determines the ratio of the long-grain and cross-grain bending stiffnesses.  I have 
found after applying this method over about 200 instruments (violins, violas and cellos) that 
tonally they are about twice as sensitive to the ring mode as the X mode.  Since the ring 
mode and X-mode frequencies are about an octave apart the average calculated in the 
formula above gives a weighted preference to the ring mode because it has double the 
frequency of the X mode.  

The formula may be applied to violins, violas or cellos equally.  In the case of the bigger 
instruments the resonance frequency will be much lower than that of the violin, but the 
weight of the plates will be much greater.  The resulting stiffness factor may be the same in 
all cases.  The fact that it gives consistent results regardless of whether the instrument is a 
violin or a cello does support the claim that it can be used reliably to compare one violin with 
another. 



 

 

 

 

The procedure 

To graduate the thickness of a back using this method, the center bouts and end bouts are 
reduced in thickness until the ring mode frequency is approximately an octave above the X-
mode frequency.  The actual graduation of the plate thicknesses within the center bouts and 
within the end bouts can be proportionate to a recognized standard.  The graduations used 
by Stradivari, as shown by Sacconi [11], are a useful recognized standard for this purpose, 
but any reasonable system will do.  The main thing is that a similar system is used each 
time, in order to get consistency from one instrument to another.  The plate is then weighed.  
The plate stiffness factor is the plate weight multiplied by the square of the average of the 
ring- and X-mode frequencies. 

To graduate the thickness of a belly, the method is similar.  The stiffness factor can be 
calculated at stages during the thickness graduation process (the stiffness is assessed 
before the sound holes or bass bar are done, the purfling is in, the fluting cut but the edges 
are square and the plate is maintained in an atmosphere of 55% relative humidity).  In our 
workshop we graduate bellies with a uniform thickness all over, but any consistent system 
can be used.  Through experience we have found that there is no need to achieve any 
specific relationship between the ring- and X-mode frequencies for the belly.  This may be 
due to the cross grain bending in the center bouts being drastically reduced by the later 
cutting of the sound holes. 

Now the question is, what is a good value for the plate stiffness factor?  This will depend on 
what the maker wants to achieve tonally, the toughness or resistance of the violin under the 
bow and other factors.  It will also depend to some extent on the arching shape.  In our 
workshop we have found that a value of stiffness factor of 4,250,000 for bellies and 
7,250,000 for backs (plate weight in grams, frequency in Hertz) works well, resulting in wood 
thicknesses that average a little more than those given by Sacconi for Stradivari [11].  
Maintaining constant plate stiffness from violin to violin by the use of this formula will take 
account of varying wood properties, but the actual stiffness factor used should be found by 
each maker to suit his/her arching shape, varnish, tonal preference, and playing feel.  The 
same value of stiffness factor can be used for violins, violas, and cellos. 

Meeting resonance criteria also  

Having graduated the thickness of the plates to give constant flexural stiffness (criterion 2), I 
will show how we aim for constancy in resonance (criterion 3).  We have found that violins 
made from plates of constant wood-centerline arching shape and with thickness graduated 
to give constant plate stiffness will be very similar tonally and will have the same resistance 
or ease of response to the player.  Because we have not tuned the plates to constant 
resonance frequencies, there could be differences in the brightness of the sound and 
evenness.  When the violin is new, plates that achieved their stiffness from a high resonance 
frequency and a low weight do sound a little brighter than those with plates that achieved the 
stiffness with more weight and lower resonance frequency.  They also are more ‘alive’ on the 
top string and more ‘reluctant’ on the lowest string.  The reverse is true for plates of low 
resonance frequency and high weight.  After the violin has been played for a while (~1 
month) these differences become much less noticeable.  One could attempt to rectify a high 
resonance-low weight characteristic by reducing the plate stiffness below the chosen 
standard, but to do so would have an immediate effect on the tone by altering the plate 
stiffness.  When it comes to a choice between achieving a certain resonance frequency and 
achieving a certain plate stiffness number, I would certainly go for the plate stiffness. 

However, we do recognize the effects of resonance criteria by choosing our wood carefully.  
Our experience has shown that the brightness of tone of the instrument and the balance 
between the top and bottom strings does depend much more on the wood used in the belly 
than that in the back.  Provided that the belly stiffness is always close to 4,250,000 and to 
7,250,000 for the back, the balance is characterized by a factor calculated as twice the belly 
weight plus the back weight.  We have found from experience that if this ‘balance factor’ is 



 

 

 

 

~240, the balance between the top and bottom strings will be good.  A balance factor of 
~240 very probably places the wood resonance (body mode) peak well, relative to the air 
resonance peak, thus satisfying a recommendation of Hutchins [5].  A high balance factor 
(~253) will favor the lower strings, and a low balance factor (~227) will favor the upper 
strings.  Some variation away from 240 is not a problem.  Some players actually prefer the 
violins with a high balance factor while others prefer those with a low balance factor. 

A particular balance factor can be achieved by having either a light belly and heavy back, or 
a light back and a heavy belly, or a medium-weight back and belly.  Again from experience, 
we have found that our tonal aspirations are best met by having a lightweight, high-
frequency belly and a heavyweight, low-frequency back.  The light belly and heavy back 
combination seems to both brighten and deepen the tonal quality of the instrument, giving 
the tone more breadth.  For this reason, we choose our belly wood to aim for a high 
stiffness-to-weight ratio and backs with a low stiffness-to-weight ratio.  For each instrument 
we record a ‘quality factor’ that is calculated as the weight of the back divided by the weight 
of the belly.  We attempt to keep this quality factor high.  Generally, the more deeply figured 
maple needs to be relatively thicker in the end bouts and a touch thinner in the center bouts, 
but overall this results in a heavier back than for a less-figured back.  We have found that, 
given a choice of our instruments, players will choose those with a high ‘quality factor’. 

Some typical figures 

The table below shows the plate weights and resonance frequencies averaged over about 
150 instruments made in our workshop to the thickness graduation method given in this 
paper.  Where figures are shown in brackets, they indicate the highest and lowest figures 
included in the average, to give some idea of the range.  The average figures are arrived at 
by calculation and, therefore, show an unjustified number of significant figures. 

Table 1.  Mean values of weights, resonance frequencies and derived stiffness, balance, and 
quality factors for back and belly plates attained by using flexural stiffness as the primary 
criterion for thickness graduation. 
    Violin   Viola   Cello 

Back weight   109 g   148 g   673 g 
         [low 101, high 117]    [low 135, high 164]    [low 630, high 716] 

Back ring-mode freq. 345 Hz    302 Hz   142 Hz 
Back X-mode freq.  171 Hz    140 Hz   66 Hz 
Back stiffness factor 7,255,000   7,228,000  7,279,000 

Belly weight   65 g   97 g   434 g 
       [low 59, high 71]    [low 88, high 106]    [low 412, high 516] 

Belly ring-mode freq. 360 Hz   296 Hz   148 Hz 
Belly X-mode freq.  151.5 Hz  118 Hz   49 Hz 
Belly stiffness factor  4,247,000  4,197,000  4,211,000 

Balance factor  239   342   1543 
        ([65× 2] + 109)      ([97× 2] + 148)      ([434× 2] + 673) 

Quality factor   1.677   1.526   1.551 
              (109 ÷ 65)          (148 ÷ 97)  (673 ÷ 434) 
 

 

The validity of the method 

The validity of the method can be appraised by asking several questions: 

1.  How does the logic of the philosophy involved stand up against alternative systems? 



 

 

 

 

2.  How valid is the theoretical derivation of the basic equation (given in the Appendix)? 

3.  Does the choice of modes used enable the formula to control reliably the long-grain and 
cross-grain plate stiffness? 
4.  What experimental evidence is there that the method achieves the consistency that is 
claimed for it? 

So far as the first three points are concerned, I have set out the arguments and I leave it to 
the reader to answer the questions.  Until such time as there is a reliable objective method 
for the evaluation of the tone and response of violins, we must rely on playing.  I am very 
comfortable with that.  If someone comes up with an alternative method of assessment and 
does the huge amount of testing needed to calibrate it, I will be very pleased. 

Here are the results of my testing by playing.  I made a large number of instruments always 
with the same wood-centerline arching shape.  About ninety of these were graduated by 
tuning the detached plates to constant resonance frequencies.  About 160 were graduated 
to maintain constant long-grain and cross-grain flexural stiffness.  I can report that the 
inconsistency of the violins tuned by resonance frequency was so disappointing that I 
developed the method presented here.  The result was a pronounced increase in 
consistency.  I have explained the reason for the remaining small inconsistencies.  These 
inconsistencies can be reduced by careful wood selection. 

Of course, there is a scientific protocol for making subjective judgments.  To do so would 
require me to submit a large number of violins graduated by this method, plus another 
equally large number of violins graduated by resonance frequency alone, to a number of 
players and ask them which group shows the greater consistency.  I did not do this and I 
don’t think this has been done for any of the proposed alternative methods of thickness 
graduation. 

Conclusions 

I am advocating that the thickness of detached plates of a violin should be graduated to 
achieve constant long-grain bending stiffness and constant cross-grain bending stiffness 
from instrument to instrument.  Provided the wood-centerline shape of the arching is also 
maintained constant, the resulting instruments will have a degree of repeatability in the 
sound that is unachievable by any other system of plate thickness graduation.  What 
differences in repeatability do remain can be minimized by careful wood selection, and the 
range of these variations lies well within the range of variation in player preferences. 
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APPENDIX.  Derivation of the relationship between stiffness, resonance frequency 
and weight 

Imagine a strip of wood (say 1-inch wide) cut from the plate, which extends diagonally 
across the plate from one side to the other.  If the strip is bent by applying a force to the 

center of the strip and pulling up on the ends, the deflection of the strip is given by, 
EI

PL
3

∝δ , 

where P is the force applied to the strip at the center, L is the length of the strip, E is Young’s 
modulus of the wood, and I is the second moment of area of the cross section of the strip.  
The resistance of the strip to bending is the stiffness of the strip.  The stiffness K is defined 
as the force P required to produce unit deflection δ . 
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L
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If the strip is simply supported at both ends and is allowed to sag under its own weight, W, 
then again the stiffness of the strip is the weight W required to produce unit deflection δ .  
This stiffness K also complies with the relationship given by Eq. (2).  The resonance 
frequency, in the first mode, of a mass hanging on the end of a spring is given by 
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= , where st∆ is the static extension of the spring under the weight of the mass.  

Similarly, if a lightweight elastic strip carries a mass at its center, this formula applies where 
st∆ is the static deflection of the center of the strip.  If the mass is distributed along the strip, 

the effective mass is reduced so the relationship would require a different constant.  
However, by eliminating constants we can write that the resonance frequency of the strip in 

the first mode is given by 
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st =∆ , where W is the weight of the beam 

(standard formula for the deflection of a uniformly loaded simply supported beam).  By 

substitution and eliminating constants we can write that 
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But, from Eq. (2) 
3L

EI
K ∝ , so by substitution and rearrangement, we obtain 

2WfK ∝ .       (3) 

This says that the stiffness of the strip is proportional to the weight of the strip multiplied by 
the square of its resonance frequency. 

Since this formula applies to a strip of any length, it would therefore apply to any and all 
strips of violin plate that one might consider.  Consequently, the formula is applicable to the 
plate as a whole.  Furthermore, the relationship is applicable equally to violins, violas and 
cellos.  The jump from saying that the formula for the stiffness of a strip applies to the whole 



 

 

 

 

plate does overlook the stiffening effect of the arching shape.  This again reminds us that the 
arching shape will affect the plate stiffness, and using a constant value of plate stiffness [as 
approximated by Eq. (3)] to get consistency between violins can only be done if the arching 
shape is unvarying.  However, it is my experience that, provided that the arching shapes are 
not greatly different, Eq. (3) can be used to produce violin plates of similar flexural stiffness. 


